欢迎来到9酷文库!

高中数学知识点总结归纳

无敌客 分享 阅读:0 加入收藏 我要投稿 复制全文 下载全文

精选文章 -->

精选2021高考数学最快解答技巧 精选归纳学习法范文大全 精选正确数学学习方法范文 精选2021年高考语文怎么复习 精选2021最新高考语文复习技巧

高中数学知识点总结归纳

尽管数学在生活中可能不会直接应用到所有情境中,但它对我们的思维方式和认知能力有着重要的影响。下面是小编为大家带来的高中数学知识点总结,希望大家能够喜欢!快来看看吧!

高中数学知识点总结

三角函数

1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次)

5. 反正弦、反余弦、反正切函数的取值范围分别是

6.你还记得某些特殊角的三角函数值吗?

7.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域.

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0.

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0.

简单随机抽样的定义:

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

解析几何

1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

3.直线的倾斜角、到的角、与的夹角的取值范围依次是。

4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

5. 对不重合的两条直线

(建议在解题时,讨论后利用斜率和截距)

6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

7.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。

①设出变量,写出目标函数

②写出线性约束条件

③画出可行域

④作出目标函数对应的系列平行线,找到并求出最优解

8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

11. 通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

13.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

正弦、余弦典型例题

1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

2、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°

3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°

4、若∠A为锐角,且,则A=()A、15°B、30°C、45°D、60°

5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

87627
领取福利

微信扫码领取福利

微信扫码分享