精选文章 -->
精选2021高考数学最快解答技巧 精选归纳学习法范文大全 精选正确数学学习方法范文 精选2021年高考语文怎么复习 精选2021最新高考语文复习技巧高考数学考试的答题技巧通用2023
在高考中,不管学生们考的哪一门,都有相应的答题技巧,你知道高考数学的答题技巧有什么吗?下面是小编为大家整理的关于高考数学考试的答题技巧,欢迎大家来阅读。
高考的数学答题方法
审题要点
审题包括浏览全卷和细读试题两个方面。
开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。
答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。
1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。
2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。
3. 解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。
高考数学考试解题技巧
一、熟悉化策略
所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
二、简单化策略
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
三、直观化策略:
所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。
四、特殊化策略
所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。
五、一般化策略
所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。
高考数学答题技巧方法
1、高考数学答题带着量角器进考场
带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。
2、高考数学答题立体几何
立体几何中,求二面角B-OA-C的新方法。利用三面角余弦定理。设二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,这个定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了。
3、高考数学答题取特殊值法
圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。
4、高考数学答题空间几何
空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
5、高考数学答题图像法
超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。如果条件过多,用图像法秒杀。不等式也是特值法图像法。
高考数学解题的方法
1.高考数学答题需要调适心理,增强信心
(1)合理设置高考数学考试目标,创设宽松的应考氛围,以平常心对待高考;
(2)合理安排饮食,提高睡眠质量;
(3)保持良好的高考数学备考状态,不断进行积极的心理暗示;
(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。
2.高考数学答题需要悉心准备,不紊不乱
(1)重点复习高考数学,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络结构,以少胜多,以不变应万变。
(2)查找高考数错题,分析高考数病因,对症下药,这是重点工作。
(3)阅读《高考数学考试说明》和《高考数学试题分析》,确保没有知识盲点。
(4)高考数回归课本,回归基础,回归近年高考试题,把握通性通法。
(5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。
(6)高考数学临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。
3.高考数学答题需要入场临战,通览全卷
最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:
(1)填写好全部考生信息,检查试卷有无问题;
(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);
(3)对于不能立即作答的题目,可一边通览,一边粗略地分为a、b两类:a类指题型比较熟悉、容易上手的题目;b类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
高考数学答题窍门
1、高考数学答题审题要慢,答题要快
有些考生只知道一味求快,往往高考数学题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、高考数学答题运算要准,胆子要大
高考数学没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
3、高考数学答题先易后难,敢于放弃
能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做高考数学难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。
4、高考数学答题先熟后生,合理用时
面对熟悉的高考数学题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。
高考数学答题方法
高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。现总结了十大选择题的解题技巧,帮助同学们提高答题效率及准确率。
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推_法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学的解题技巧
在审题时要注意题目中给出的条件,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”.
步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。
步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
最后要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学必备解题技巧
高考的特点是以学生解题能力的高低为标准的一次性选拔,这就使得临场发挥显得尤为重要,研究和总结临场解题策略,进行应试训练和心理辅导,已成为高考辅导的重要内容之一,正确运用数学高考临场解题策略,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能运用科学的检索方法,建立神经联系,挖掘思维和知识的潜能,考出最佳成绩。
一、调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了。这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。就是先做简单题,再做综合题。应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措。应想到试题偏难对所有考生也难。通过这种暗示,确保情绪稳定。对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异,就是说,先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,
4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗
5.先点后面,近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面
6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
五、一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
六、确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
七、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
八、面对难题,讲究策略,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
九、以退求进,立足特殊,发散一般
对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
十、执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
十一、回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
十二、应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”。如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。